Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neurochem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurochemistry
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain

Authors: Giovanni, Lugli; Vetle I, Torvik; John, Larson; Neil R, Smalheiser;

Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain

Abstract

AbstractWe have characterized the expression of microRNAs and selected microRNA precursors within several synaptic fractions of adult mouse forebrain, including synaptoneurosomes, synaptosomes and isolated post‐synaptic densities (PSDs), using methods of microRNA microarray, real time qRT‐PCR, Northern blotting and immunopurification using anti‐PSD95 antibody. The majority of brain microRNAs (especially microRNAs known to be expressed in pyramidal neurons) are detectably expressed in synaptic fractions, and a subset of microRNAs is significantly enriched in synaptic fractions relative to total forebrain homogenate. MicroRNA precursors are also detectable in synaptic fractions at levels that are comparable to whole tissue. Whereas mature microRNAs are predominantly associated with soluble components of the synaptic fractions, microRNA precursors are predominantly associated with PSDs. For seven microRNAs examined, there was a significant correlation between the relative synaptic enrichment of the precursor and the relative synaptic enrichment of the corresponding mature microRNA. These findings support the proposal that microRNAs are formed, at least in part, via processing of microRNA precursors locally within dendritic spines. Dicer is expressed in PSDs but is enzymatically inactive until conditions that activate calpain cause its liberation; thus, we propose that synaptic stimulation may lead to local processing of microRNA precursors in proximity to the synapse.

Related Organizations
Keywords

Male, Gene Expression Profiling, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Mice, Inbred C57BL, Mice, MicroRNAs, Prosencephalon, Synapses, RNA Precursors, Animals, Immunoprecipitation, RNA, Messenger, Disks Large Homolog 4 Protein, Guanylate Kinases, History, Ancient, Oligonucleotide Array Sequence Analysis, Subcellular Fractions, Synaptosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    236
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
236
Top 1%
Top 10%
Top 1%
bronze