MicroRNAs Regulate Renal Tubule Maturation through Modulation of Pkd1
MicroRNAs Regulate Renal Tubule Maturation through Modulation of Pkd1
MicroRNAs (miRNAs) contribute to the regulation of early kidney development, but their role during later stages of renal tubule maturation is not well understood. Here, we found that ablation of the miRNA-processing enzyme Dicer from maturing renal tubules produces tubular and glomerular cysts in mice. Inactivation of Dicer is associated with downregulation of miR-200, a kidney-enriched miRNA family, and upregulation of the polycystic kidney disease gene Pkd1. Inhibition of miR-200 in cultured renal epithelial cells disrupted tubulogenesis and led to upregulation of Pkd1. Using bioinformatic and in vitro approaches, we found that miR-200b/c/429 induce post-transcriptional repression of Pkd1 through two conserved binding sites in the 3'-Untranslated regions of Pkd1. Overexpression of PKD1 in renal epithelial cells was sufficient to disrupt tubulogenesis and produce cyst-like structures. In conclusion, miRNAs are essential for the maturation of renal tubules, and Pkd1 is a target of miR-200. These results also suggest that miRNAs may modulate PKD1 gene dosage and play a role in the initiation of cystogenesis.
- The University of Texas Southwestern Medical Center United States
Ribonuclease III, Polycystic Kidney Diseases, TRPP Cation Channels, Gene Dosage, Mice, Transgenic, DEAD-box RNA Helicases, Mice, MicroRNAs, Kidney Tubules, Animals, Newborn, Animals, Humans
Ribonuclease III, Polycystic Kidney Diseases, TRPP Cation Channels, Gene Dosage, Mice, Transgenic, DEAD-box RNA Helicases, Mice, MicroRNAs, Kidney Tubules, Animals, Newborn, Animals, Humans
8 Research products, page 1 of 1
- 2017IsRelatedTo
- 2014IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2012IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).81 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
