Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fish & Shellfish Immunology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fish & Shellfish Immunology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Effects of increasing dietary level of organic acids and nature-identical compounds on growth, intestinal cytokine gene expression and gut microbiota of rainbow trout (Oncorhynchus mykiss) reared at normal and high temperature

Authors: Pelusio N. F.; Rossi B.; Parma L.; Volpe E.; Ciulli S.; Piva A.; D'Amico F.; +5 Authors

Effects of increasing dietary level of organic acids and nature-identical compounds on growth, intestinal cytokine gene expression and gut microbiota of rainbow trout (Oncorhynchus mykiss) reared at normal and high temperature

Abstract

Organic acids (OA) and nature-identical compounds (NIC) such as monoterpenes and aldehydes are well-known growth and health promoters in terrestrial livestock while their application for fish production is recent and their mechanisms of action require further study. Hence, this study tested the increasing dietary level (D0, D250, D500, D1000; 0, 250, 500 and 1000 mg kg feed-1 respectively) of a microencapsulated blend containing citric and sorbic acid, thymol and vanillin over 82 days on rainbow trout to assess the effects on growth, feed utilization, intestine cytokine gene expression and gut microbiota (GM). Furthermore, the effects on intestinal cytokine gene expression and GM were also explored after one week at high water temperature (23 °C). OA and NIC improved specific growth rate (SGR) and feed conversion rate (FCR) during the second half (day 40-82) of the feeding trial, while at the end of the trial protein (PER) and lipid efficiency (LER) increased with increasing dietary level. GM diversity and composition and cytokine gene expression analysis showed no significant differences in fish fed with increasing doses of OA and NIC (82 days) demonstrating the absence of inflammatory activity in the intestinal mucosa. Although there were no statistical differences, GM structure showed a tendency in clustering D0 group separately from the other dietary groups and a trend towards reduction of Streptococcus spp. was observed in the D250 and D1000 groups. After exposure to high water temperature, lower GM diversity and increased gene expression of inflammatory intestinal cytokines were observed for both inclusions (D0 vs. D1000) compared to groups in standard condition. However, the gene up-regulation involved a limited number of cytokines showing the absence of a substantial inflammation process able to compromise the functional activity of the intestine. Despite further study should be conducted to fully clarify this mechanism, cytokines up-regulation seems to be concomitant to the reduction of the GM diversity and, particularly, to the reduction of specific lactic acid bacteria such as Leuconostoc. The application of the microencapsulate blend tested can be a useful strategy to improve growth and feed utilization in rainbow trout under normal temperature conditions. According to the results organic acids and nature-identical compounds did not revert the effects triggered by the increased temperature of water.

Country
Italy
Keywords

Hot Temperature, Time Factors, Gene Expression, Cytokine gene expression; Feed utilization; Growth; Gut microbiome; High rearing temperature; Nature-identical compounds; Organic acid; Rainbow trout, Bacterial Physiological Phenomena, Animal Feed, Citric Acid, Sorbic Acid, Thymol, Diet, Gastrointestinal Microbiome, Intestines, Eating, Benzaldehydes, Oncorhynchus mykiss, Animals, Cytokines

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 1%
Top 10%
Top 10%
Green
hybrid