Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Biology &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Biology & Therapy
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Tumor cell-specific blockade of CXCR4/SDF-1 interactions in prostate cancer cells by hTERT promoter induced CXCR4 knockdown: A possible metastasis preventing and minimizing approach

Authors: Feng Qu; Chuan-guo Xiao; Yajun Xiao; Qingwei Zhang; Jun Zhao; Mei Liu; Fu-qing Zeng; +3 Authors

Tumor cell-specific blockade of CXCR4/SDF-1 interactions in prostate cancer cells by hTERT promoter induced CXCR4 knockdown: A possible metastasis preventing and minimizing approach

Abstract

Stromal cell-derived factor-1 (SDF-1)/CXCR4 pathway has been shown to play an important role in prostate cancer (PCa) metastasis and siRNA expression using cell-specific promoters has been demonstrated to be a potential tool for targeted gene therapy. Here, we illustrate that human telomerase reverse transcriptase (hTERT) promoter-induced CXCR4 knockdown inhibits PCa bone metastasis. We first investigated CXCR4 expressions and interactions of CXCR4/SDF-1 in PCa cells, developed a retrovirus system that could stably express CXCR4 small hairpin RNA driven by hTERT promoter and then determined the inhibitory effects of cell-specific blockade of CXCR4/SDF-1 pathway on PCa metastasis. It was shown that both PCa tissues and cell lines expressed CXCR4 and the expression in PCa tissue had a positive correlation to clinical stages while not to Gleason scores or serum PSA level. PCa metastases most presenting human tissues expressed high levels of SDF-1. Exogenous SDF-1 enhanced in vitro adhesion, migration and invasion of PCa cells and these bioeffects were repressed by hTERT promoter-induced CXCR4-shRNA expression. This CXCR4 knockdown was also found to significantly inhibit bone metastasis in vivo. We conclude that CXCR4/SDF-1 pathway plays an important role in PCa bone metastasis. hTERT promoter-induced tumor cell-specific CXCR4 gene silencing may prevent in vitro invasiveness and in vivo bone metastasis of PCa. These findings may enable new avenues of prevention and treatment for PCa metastasis.

Related Organizations
Keywords

Male, Receptors, CXCR4, Models, Genetic, Prostatic Neoplasms, Chemokine CXCL12, Gene Expression Regulation, Neoplastic, Cell Movement, Cell Line, Tumor, Cell Adhesion, Humans, Neoplasm Invasiveness, Neoplasm Metastasis, Promoter Regions, Genetic, Telomerase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research