Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Discoveryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Discovery
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Discovery
Article . 2014 . Peer-reviewed
Data sources: Crossref
Cancer Discovery
Article . 2015
versions View all 3 versions

Vulnerabilities of PTEN–TP53-Deficient Prostate Cancers to Compound PARP–PI3K Inhibition

Authors: González Billalabeitia, Enrique; Seitzer, Nina; Song, Su Jung; Song, Min Sup; Patnaik, Akash; Liu, Xue Song; Epping, Mirjam T.; +13 Authors

Vulnerabilities of PTEN–TP53-Deficient Prostate Cancers to Compound PARP–PI3K Inhibition

Abstract

Abstract Prostate cancer is the most prevalent cancer in males, and treatment options are limited for advanced forms of the disease. Loss of the PTEN and TP53 tumor suppressor genes is commonly observed in prostate cancer, whereas their compound loss is often observed in advanced prostate cancer. Here, we show that PARP inhibition triggers a p53-dependent cellular senescence in a PTEN-deficient setting in the prostate. Surprisingly, we also find that PARP-induced cellular senescence is morphed into an apoptotic response upon compound loss of PTEN and p53. We further show that superactivation of the prosurvival PI3K–AKT signaling pathway limits the efficacy of a PARP single-agent treatment, and that PARP and PI3K inhibitors effectively synergize to suppress tumorigenesis in human prostate cancer cell lines and in a Pten/Trp53–deficient mouse model of advanced prostate cancer. Our findings, therefore, identify a combinatorial treatment with PARP and PI3K inhibitors as an effective option for PTEN-deficient prostate cancer. Significance: The paucity of therapeutic options in advanced prostate cancer displays an urgent need for the preclinical assessment of novel therapeutic strategies. We identified differential therapeutic vulnerabilities that emerge upon the loss of both PTEN and p53, and observed that combined inhibition of PARP and PI3K provides increased efficacy in hormone-insensitive advanced prostate cancer. Cancer Discov; 4(8); 896–904. ©2014 AACR. This article is highlighted in the In This Issue feature, p. 855

Keywords

Male, Tumor, PTEN Phosphohydrolase, 610, Prostatic Neoplasms, Apoptosis, Animals; Apoptosis; Cell Aging; Cell Line, Tumor; Elafin; Humans; Male; Mice; Molecular Targeted Therapy; PTEN Phosphohydrolase; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Prostatic Neoplasms; Tumor Suppressor Protein p53; Oncology, Poly(ADP-ribose) Polymerase Inhibitors, Cell Line, Elafin, Mice, Cell Aging, Cell Line, Tumor, Animals, Humans, Molecular Targeted Therapy, Poly(ADP-ribose) Polymerases, Tumor Suppressor Protein p53, Cellular Senescence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 1%
bronze