Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article . 2016 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
License: CC BY NC ND
Data sources: PubMed Central
versions View all 3 versions

FKBP12 enhances sensitivity to chemotherapy-induced cancer cell apoptosis by inhibiting MDM2

Authors: Liu, T; Xiong, J; Yi, S; Zhang, H; Zhou, S; Gu, L; Zhou, M;

FKBP12 enhances sensitivity to chemotherapy-induced cancer cell apoptosis by inhibiting MDM2

Abstract

The FK506-binding protein 12 (FKBP12) is a cytoplasmic protein and has been reported to possess multiple functions in signaling transduction based on its interaction with different cellular targets. Here, we report that FKBP12 interacts with oncoprotein MDM2 and induces MDM2 degradation. We demonstrate that FKBP12 degrades MDM2 through binding to MDM2 protein, disrupting MDM2/MDM4 interaction and inducing MDM2 self-ubiquitination. The FKBP12-mediated MDM2 degradation was significantly enhanced when the transfected MDM2 was localized in the cytoplasm. The endogenous MDM2, when it was induced by p53 subjecting to DNA-damaging stimuli such as treatment with doxorubicin, was also significantly inhibited by FKBP12. This is due to translocation of p53-induced MDM2 from the nucleus to the cytoplasm, which facilitates interaction with cytoplasmic FKBP12. Furthermore, the enhanced level of MDM2 following p53 activation in nutlin-3 treated cells was also inhibited by FKBP12. The FKBP12-mediated downregulation of MDM2 in response to doxorubicin or nutlin-3 results in continuing and constitutive activation of p53, inhibition of XIAP and sensitization of cancer cells to apoptosis. These results identify a novel function for FKBP12 in downregulating MDM2, which directly enhances sensitivity of cancer cells to chemotherapy and nutlin-3 treatment.

Related Organizations
Keywords

Imidazoles, Ubiquitination, Antineoplastic Agents, Apoptosis, Proto-Oncogene Proteins c-mdm2, X-Linked Inhibitor of Apoptosis Protein, Tacrolimus Binding Protein 1A, Piperazines, Doxorubicin, Drug Resistance, Neoplasm, Cell Line, Tumor, Proteolysis, Humans, Original Article, Protein Interaction Domains and Motifs, Tumor Suppressor Protein p53, Protein Kinase Inhibitors, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
hybrid