Mitogenomes of Polar Bodies and Corresponding Oocytes
Mitogenomes of Polar Bodies and Corresponding Oocytes
The objective of the present study was to develop an approach that could assess the chromosomal status and the mitochondrial DNA (mtDNA) content of oocytes and their corresponding polar bodies (PBs) with the goal of obtaining a comparative picture of the segregation process both for nuclear and mtDNA. After Whole Genome Amplification (WGA), sequencing of the whole mitochondrial genome was attempted to analyze the segregation of mutant and wild-type mtDNA during human meiosis. Three triads, composed of oocyte and corresponding PBs, were analyzed and their chromosome status was successfully assessed. The complete mitochondrial genome (mitogenome) was almost entirely sequenced in the oocytes (95.99% compared to 98.43% in blood), while the percentage of sequences obtained in the corresponding PB1 and PB2 was lower (69.70% and 69.04% respectively). The comparison with the mtDNA sequence in blood revealed no changes in the D-loop region for any of the cells of each triad. In the coding region of blood mtDNA and oocyte mtDNA sequences showed full correspondence, whereas all PBs had at least one change with respect to the blood-oocyte pairs. In all, 9 changes were found, either in PB1 or PB2: 4 in MT-ND5, 2 in MT-RNR2, and 1 each in MT-ATP8, MT-ND4, MT-CYTB. The full concordance between oocyte and blood in the 3 triads, and the relegation of changes to PBs, revealed the unexpected coexistence of different variants, giving a refined estimation of mitochondrial heteroplasmy. Should these findings be confirmed by additional data, an active mechanism could be postulated in the oocyte to preserve a condition of 'normality'.
Base Sequence, Science, Q, Molecular Sequence Data, R, Genetic Variation, Polar Bodies, Sequence Analysis, DNA, DNA, Mitochondrial, Chromosomes, Mitochondria, Meiosis, Chromosome Segregation, Genome, Mitochondrial, Oocytes, Medicine, Humans, Female, Agricultural and Biological Sciences (all); Biochemistry, Genetics and Molecular Biology (all); Medicine (all), Research Article
Base Sequence, Science, Q, Molecular Sequence Data, R, Genetic Variation, Polar Bodies, Sequence Analysis, DNA, DNA, Mitochondrial, Chromosomes, Mitochondria, Meiosis, Chromosome Segregation, Genome, Mitochondrial, Oocytes, Medicine, Humans, Female, Agricultural and Biological Sciences (all); Biochemistry, Genetics and Molecular Biology (all); Medicine (all), Research Article
80 Research products, page 1 of 8
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
