Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2003 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2003
versions View all 2 versions

Hepatocyte Nuclear Factor 4α Isoforms Originated from the P1 Promoter Are Expressed in Human Pancreatic β-Cells and Exhibit Stronger Transcriptional Potentials than P2 Promoter-Driven Isoforms

Authors: Thomas Bouckenooghe; François Pattou; Brigitte Vandewalle; Julie Kerr-Conte; B. Lukoviak; Pierre Formstecher; Bernard Laine; +2 Authors

Hepatocyte Nuclear Factor 4α Isoforms Originated from the P1 Promoter Are Expressed in Human Pancreatic β-Cells and Exhibit Stronger Transcriptional Potentials than P2 Promoter-Driven Isoforms

Abstract

The nuclear receptor hepatocyte nuclear factor (HNF) 4 alpha is involved in a transcriptional network and plays an important role in pancreatic beta-cells. Mutations in the HNF4 alpha gene are correlated with maturity-onset diabetes of the young 1. HNF4 alpha isoforms result from both alternative splicing and alternate usage of promoters P1 and P2. It has recently been reported that HNF4 alpha transcription is driven almost exclusively by the P2 promoter in pancreatic islets. We observed that transcripts from both P1 and P2 promoters were expressed in human pancreatic beta-cells and in the pancreatic beta-cell lines RIN m5F and HIT-T15. Expression of HNF4 alpha proteins originating from the P1 promoter was confirmed by immunodetection. Due to the presence of the activation function module AF-1, HNF4 alpha isoforms originating from the P1 promoter exhibit stronger transcriptional activities and recruit coactivators more efficiently than isoforms driven by the P2 promoter. Conversely, activities of isoforms produced by both promoters were similarly repressed by the corepressor small heterodimer partner. These behaviors were observed on the promoter of HNF1 alpha that is required for beta-cell function. Our results highlight that expression of P1 promoter-driven isoforms is important in the control of pancreatic beta-cell function.

Keywords

Transcription, Genetic, Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Blotting, Western, Phosphoproteins, Cell Line, Rats, DNA-Binding Proteins, Islets of Langerhans, Hepatocyte Nuclear Factor 4, Animals, Humans, Protein Isoforms, Promoter Regions, Genetic, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%
bronze