Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana: identification and genome comparative mapping of specific gene homologues
pmid: 16311726
Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana: identification and genome comparative mapping of specific gene homologues
The study reported was aimed at the identification and determination of the chromosomal organisation of genes involved in the ethylene biosynthesis and signalling pathways in Brassica oleracea, on the basis of the Arabidopsis thaliana DNA probes and in silico genome analysis. Because of its polyploidal origin, the B. oleracea genome is characterised by extensive gene redundancy. Therefore, an important aspect of gene expression in B. oleracea response to environmental stimuli is to identify the specific gene copy involved. This aspect should also be taken into consideration while studying the genetic basis of biosynthesis and signal transduction in relation to basic phytohormones. Our present work concerns the identification of homologue genes involved in ethylene biosynthesis such as SAM, ACS and ACO, as well as those involved in the ethylene signalling pathway, mainly ETR1, CTR1, MKK4, MKK5, EIN2, EIN3, EREBP, ERF5 and ERF7 on the basis of the restriction fragment length polymorphism (RFLP) and PCR mapping. In the case of ACC synthases, (ACSs) the in silico analysis of gene variants in the genome of A. thaliana was followed by the identification of homologues to ACS2, ACS6 and ACS7 in the B. oleracea database. In total, 22 loci with sequence homology to the genes under analysis were included in the existing B. oleracea RFLP chromosomal map. Based on the stress responsiveness of most of the A. thaliana genes analysed in this study, we performed initial functional analysis of some gene homologues mapped. With the use of the RT-PCR approach the conservation of differential transcriptional induction of ACS homologues in the B. oleracea and A. thaliana was demonstrated during ozone stress.
- Polish Academy of Sciences Poland
- Institute of Plant Genetics Poland
- Adam Mickiewicz University in Poznań Poland
- Polish Academy of Learning Poland
Expressed Sequence Tags, Reverse Transcriptase Polymerase Chain Reaction, Arabidopsis, Gene Amplification, Gene Dosage, Chromosome Mapping, Brassica, Ethylenes, Genes, Plant, Chromosomes, Plant, Ozone, Species Specificity, Genome, Plant, Polymorphism, Restriction Fragment Length
Expressed Sequence Tags, Reverse Transcriptase Polymerase Chain Reaction, Arabidopsis, Gene Amplification, Gene Dosage, Chromosome Mapping, Brassica, Ethylenes, Genes, Plant, Chromosomes, Plant, Ozone, Species Specificity, Genome, Plant, Polymorphism, Restriction Fragment Length
14 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2020IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
