Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytical Chemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical Chemistry
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions

Single-Molecule Sensing of an Anticancer Therapeutic Protein–Protein Interaction Using the Chemically Modified OmpG Nanopore

Authors: Hye-Jin Hwang; Jin-Sik Kim; Jeonghyun Lee; Jun Sik Min; Ki-Baek Jeong; Eunha Kim; Mi-Kyung Lee; +1 Authors

Single-Molecule Sensing of an Anticancer Therapeutic Protein–Protein Interaction Using the Chemically Modified OmpG Nanopore

Abstract

Nanopore sensors are a highly attractive platform for single-molecule sensing for sequencing, disease diagnostics, and drug screening. Outer membrane protein G (OmpG) nanopores have advantages for single-molecule sensing owing to their rigid monomeric structure, which comprises seven flexible loops, providing distinct gating patterns upon analyte binding. Blocking of the protein-protein interaction between B-cell lymphoma-extra-large (Bcl-xL) and the BH3 domain of Bcl-2 homologous antagonist/killer (Bak-BH3) has been reported as a promising strategy for anticancer therapy. Here, we characterized the interaction between Bcl-xL and Bak-BH3 as well as its inhibition by a small-molecule inhibitor using click chemistry-based Bak-BH3 peptide-conjugated OmpG nanopores. The binding of Bcl-xL to Bak-BH3 generated characteristic gating signals involving significant changes in the amplitudes of noise and gating parameters such as gating frequency, open probability, and durations of open and closed states. Notably, specific inhibition of Bcl-xL by the small-molecule antagonist, ABT-737, led to the recovery of the noise and gating parameters. Collectively, these results revealed that the chemically modified OmpG nanopore can serve as a valuable sensor platform for ultrasensitive, rapid, and single-molecule-based drug screening against protein-protein interactions, which are therapeutic targets for various diseases.

Related Organizations
Keywords

Nanopores, Proto-Oncogene Proteins c-bcl-2, Escherichia coli Proteins, bcl-X Protein, Nanotechnology, Porins, Apoptosis, Bacterial Outer Membrane Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Related to Research communities
Cancer Research