Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2014 . Peer-reviewed
Data sources: Crossref
Science
Article . 2014
versions View all 3 versions

Structure of the large ribosomal subunit from human mitochondria

Authors: A. Brown; A. Amunts; X.-c. Bai; Y. Sugimoto; P. C. Edwards; G. Murshudov; S. H. W. Scheres; +1 Authors

Structure of the large ribosomal subunit from human mitochondria

Abstract

Making mitochondrial hydrophobic proteins Mitochondria produce chemical energy for the cell. Human mitochondria have their own specific ribosomes—mitoribosomes, which are distinct from cytoplasmic ribosomes. Mitoribosomes synthesize the mitochondrial membrane proteins that generate the chemical energy. Brown et al. used cryo–electron microscopy to determine the high-resolution structure of the large subunit of the human mitoribosome. The mitoribosome has a number of unique features, including an exit tunnel lined with hydrophobic amino acid residues. Science , this issue p. 718

Related Organizations
Keywords

Mitochondrial Proteins, Binding Sites, Protein Conformation, Cryoelectron Microscopy, Mutation, Ribosome Subunits, Humans, Nucleic Acid Conformation, RNA, Transfer, Val, Mitochondria

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    284
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
284
Top 1%
Top 10%
Top 1%
bronze