Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2000 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
versions View all 2 versions

Capillary-wave effects at critical wetting in type-I superconductors

Authors: R. Blossey; H. T. Dobbs;

Capillary-wave effects at critical wetting in type-I superconductors

Abstract

We discuss the effect of fluctuations of the superconductor-normal (SC/N) interface on the (short-range) critical wetting transition in type-I superconductors. Functional renormalization of a standard effective interface Hamiltonian shows that the fluctuation regimes found for short-range critical wetting in conventional fluid systems appear in superconductors with slight modifications. Because the fluctuation parameter omega approximately 1/(1-sqrt[2]kappa) depends on the Ginzburg-Landau parameter kappa, strong fluctuation effects would be expected in the limit kappa-->1/sqrt[2]. However, the capillary-wave spectrum of the SC/N interface has an unusual form due to a relevant magnetic field contribution which suppresses long wavelength fluctuations, invalidating conclusions drawn from the standard effective interface Hamiltonian, and validating the results of mean-field theory.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average