Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Clini...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Clinical Investigation
Article . 1988 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Regulation of the rabbit ileal brush-border Na+/H+ exchanger by an ATP-requiring Ca++/calmodulin-mediated process.

Authors: R P, Rood; E, Emmer; J, Wesolek; J, McCullen; Z, Husain; M E, Cohen; R S, Braithwaite; +3 Authors

Regulation of the rabbit ileal brush-border Na+/H+ exchanger by an ATP-requiring Ca++/calmodulin-mediated process.

Abstract

Brush-border vesicles purified from rabbit ileal villus cells were used to evaluate how Ca++/calmodulin (CaM) regulates the neutral linked NaCl absorptive process, part of which is a Na+/H+ exchanger. After freezing and thawing to allow incorporation of macromolecules into the vesicles, the effect of Ca++/CaM on brush-border Na+ uptake with an acid inside pH gradient, and on Na+/H+ exchange was determined. Freezing and thawing vesicles with 0.85 microM free Ca++ plus 5 microM exogenous CaM failed to alter Na+/H+ exchange as did the addition of exogenous ATP plus an ATP regenerating system, which was sufficient to elevate intravesicular ATP to 47 microM from a basal level of 0.4 microM. However, the combination of Ca++/CaM plus ATP inhibited Na+ uptake in the presence of an acid inside pH gradient and inhibited Na+/H+ exchange, while Na+ uptake in the absence of a pH gradient was not altered. This effect required a hydrolyzable form of ATP, and did not occur when the nonhydrolyzable ATP analogue, AMP-PNP, replaced ATP. Under the identical intravesicular conditions used for the transport studies, Ca++ (0.85 microM) plus exogenous CaM (5 microM), in the presence of magnesium plus ATP, increased phosphorylation of five brush-border peptides. These data are consistent with Ca++/CaM acting via phosphorylation to regulate the ileal brush-border Na+/H+ exchanger.

Related Organizations
Keywords

Male, Sodium-Hydrogen Exchangers, Microvilli, Biological Transport, Adenosine Triphosphate, Calmodulin, Ileum, Freezing, Animals, Calcium, Rabbits, Phosphorylation, Carrier Proteins, Peptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Average
Top 10%
Top 10%
gold