Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao JBIC Journal of Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
JBIC Journal of Biological Inorganic Chemistry
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

The mechanism of copper uptake by tyrosinase from Bacillus megaterium

Authors: Margarita, Kanteev; Mor, Goldfeder; Michał, Chojnacki; Noam, Adir; Ayelet, Fishman;

The mechanism of copper uptake by tyrosinase from Bacillus megaterium

Abstract

Tyrosinase belongs to the type 3 copper enzyme family, containing a dinuclear copper center, CuA and CuB. It is mainly responsible for melanin production in a wide range of organisms. Although copper ions are essential for the activity of tyrosinase, the mechanism of copper uptake is still unclear. We have recently determined the crystal structure of tyrosinase from Bacillus megaterium (TyrBm) and revealed that this enzyme has tighter binding of CuA in comparison with CuB. Investigating copper accumulation in TyrBm, we found that the presence of copper has a more significant effect on the diphenolase activity. By decreasing the concentration of copper, we increased the diphenolase to monophenolase activity ratio twofold. Using a rational design approach, we identified five variants having an impact on copper uptake. We have found that a major role of the highly conserved Asn205 residue is to stabilize the orientation of the His204 imidazole ring in the binding site, thereby promoting the correct coordination of CuB. Further investigation of these variants revealed that Phe197, Met61, and Met184, which are located at the entrance to the binding site, not only play a role in copper uptake, but are also important for enhancing the diphenolase activity. We propose a mechanism of copper accumulation by the enzyme as well as an approach to changing the selectivity of TyrBm towards L-dopa production.

Keywords

Models, Molecular, Binding Sites, Monophenol Monooxygenase, Protein Conformation, Bacillus megaterium, Point Mutation, Crystallography, X-Ray, Oxidoreductases, Copper

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%