Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant Biotechnology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Biotechnology Journal
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Plant peptide deformylase: a novel selectable marker and herbicide target based on essential cotranslational chloroplast protein processing

Authors: Cai-Xia, Hou; Lynnette M A, Dirk; Sitakanta, Pattanaik; Narayan C, Das; Indu B, Maiti; Robert L, Houtz; Mark A, Williams;

Plant peptide deformylase: a novel selectable marker and herbicide target based on essential cotranslational chloroplast protein processing

Abstract

SummaryTransgenic tobacco plants expressing three different forms of Arabidopsis plant peptide deformylase (AtDEF1.1, AtDEF1.2 and AtDEF2; EC 3.5.1.88) were evaluated for resistance to actinonin, a naturally occurring peptide deformylase inhibitor. Over‐expression of either AtDEF1.2 or AtDEF2 resulted in resistance to actinonin, but over‐expression of AtDEF1.1 did not. Immunological analyses demonstrated that AtDEF1.2 and AtDEF2 enzymes were present in both stromal and thylakoid fractions in chloroplasts, but AtDEF1.1 was localized to mitochondria. The highest enzyme activity was associated with stromal AtDEF2, which was approximately 180‐fold greater than the level of endogenous activity in the host plant. Resistance to actinonin cosegregated with kanamycin resistance in Atdef1.2‐D and Atdef2‐D transgenic plants. Here, we demonstrate that the combination of plant peptide deformylase and peptide deformylase inhibitors may represent a native gene selectable marker system for chloroplast and nuclear transformation vectors, and also suggest plant peptide deformylase as a potential broad‐spectrum herbicide target.

Related Organizations
Keywords

Genetic Markers, Nicotiana, Chloroplasts, Herbicides, Arabidopsis, Hydroxamic Acids, Plants, Genetically Modified, Amidohydrolases, Transformation, Genetic, Enzyme Inhibitors, Herbicide Resistance, Protein Modification, Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
gold