Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Biology
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Mudskippers brood their eggs in air but submerge them for hatching

Authors: Atsushi, Ishimatsu; Yu, Yoshida; Naoko, Itoki; Tatsusuke, Takeda; Heather J, Lee; Jeffrey B, Graham;

Mudskippers brood their eggs in air but submerge them for hatching

Abstract

SUMMARYIntertidal mudflats are highly productive ecosystems that impose severe environmental challenges on their occupants due to tidal oscillations and extreme shifts in habitat conditions. Reproduction on mudflats requires protection of developing eggs from thermal and salinity extremes,O2 shortage, dislodgement by currents, siltation and predation. Mudskippers are air-breathing, amphibious fishes, and one of few vertebrates that reside on mudflats. They lay their eggs in mud burrows containing extremely hypoxic water, raising the question of how the eggs survive. We found that the Japanese mudskipper Periophthalmus modestus deposits its eggs on the walls of an air-filled chamber within its burrow. To ensure adequate O2 for egg development, the burrow-guarding male mudskipper deposits mouthfuls of fresh air into the egg chamber during each low tide, a behaviour that can be upregulated by egg-chamber hypoxia. When egg development is complete the male, on a nocturnal rising tide, removes the egg-chamber air and releases it outside the burrow. This floods the egg chamber and induces egg hatching. Thus, P. modestus has developed a reproductive strategy that allows it to nurture eggs in this severe habitat rather than migrating away from the mudflat. This requires that mudskipper eggs be specialized to develop in air and that the air-breathing capacity of the egg-guarding male be integrated in a complex behavioural repertoire that includes egg guarding, ferrying air to and from the egg chamber, and sensing O2 levels therein, all in concert with the tidal cycle.

Keywords

Male, Time Factors, Air, Respiration, Nesting Behavior, Amphibians, Oxygen, Water Movements, Animals, Female, Ovum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
bronze