Powered by OpenAIRE graph

Conduction in the Giant Nerve Fiber Pathway in Temperature-Sensitive Paralytic Mutants of Drosophila

Authors: Barry Ganetzky; Thomas Elkins;

Conduction in the Giant Nerve Fiber Pathway in Temperature-Sensitive Paralytic Mutants of Drosophila

Abstract

To study electrogenic conduction in neurons of the cervical giant nerve fiber (CGF) pathway in Drosophila adults carrying temperature-sensitive paralytic mutations that affect sodium channels, we recorded dorsal longitudinal muscle (DLM) responses evoked by electrical stimulation of the brain. In the mutants tipE, napts and parats, conduction in certain neurons presynaptic to the CGF failed at about the same temperature at which paralysis occurred in each mutant. Conduction in the CGF and neurons postsynaptic to it remained active in all mutants even at very elevated temperatures. In contrast, analysis of sei mutants showed enhanced spontaneous activity at elevated temperatures in at least some neurons of the CGF pathway. The implications of these results with respect to the normal in vivo functions of these genes in neuronal signalling are considered.

Related Organizations
Keywords

Nerve Fibers, Mutation, Neural Conduction, Reaction Time, Temperature, Animals, Paralysis, Drosophila, Electric Stimulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Average
Top 10%
Average