Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Engineering Geologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Engineering Geology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions

Monitoring the performance of permeable reactive barriers constructed in acid sulfate soils

Authors: Subhani Medawela; Buddhima Indraratna; Senura Athuraliya; Glenys Lugg; Long D. Nghiem;

Monitoring the performance of permeable reactive barriers constructed in acid sulfate soils

Abstract

Abstract Two pilot-scale permeable reactive barriers (PRBs) were installed in an acidic terrain to treat contaminated groundwater with low pH and high concentrations of Al and Fe. The first pilot-scale barrier (PRB-1) was installed in 2006 using recycled concrete aggregates (RCA) as the reactive material, and the second barrier (PRB-2) was installed in late 2019 using limestone aggregates (LA) as the reactive material. Although the initial material cost of the recycled concrete aggregates is low, laboratory trials conducted before the field applications deduced that limestone is capable of more reliable and efficient pH neutralisation in the long term, reducing frequent maintenance or material replacement in the PRB. The performance of PRB-1 has been monitored continuously over the past 14 years. In particular, both internal (within PRB) and external (upgradient and downgradient) variations in acidity (pH), ion concentrations, and the flow conditions, including the piezometric heads, have been analysed. These decade long field observations have resulted in a comprehensive understanding of the temporal variations of treatment by RCA along the groundwater flow path through the alkaline granular mass and its biogeochemical clogging. For instance, acid neutralisation at the entrance of PRB-1 decreased by 31% over 14 years, whereas the corresponding reduction at the outlet is only 6%. The non-homogeneous biogeochemical clogging in different PRB zones was evident by a 48% reduction in hydraulic conductivity at the inlet and a 34% reduction at the outlet.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%