Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2006 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Identification of the Interactions between Cytochrome P450 2E1 and Cytochrome b5 by Mass Spectrometry and Site-directed Mutagenesis

Authors: Qiuxia, Gao; Catalin E, Doneanu; Scott A, Shaffer; Elinor T, Adman; David R, Goodlett; Sidney D, Nelson;

Identification of the Interactions between Cytochrome P450 2E1 and Cytochrome b5 by Mass Spectrometry and Site-directed Mutagenesis

Abstract

The reaction cycles of cytochrome P450s (P450) require input of two electrons. Electrostatic interactions are considered important driving forces in the association of P450s with their redox partners, which in turn facilitates the transfer of the two electrons. In this study, the cross-linking reagent, 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC), was used to covalently link cytochrome P450 2E1 (CYP2E1) with cytochrome b(5) (b(5)) through the formation of specific amide bonds between complementary charged residue pairs. Cross-linked peptides in the resulting protein complex were distinguished from non-cross-linked peptides using an (18)O-labeling method on the basis that cross-linked peptides incorporate twice as many (18)O atoms as non-cross-linked peptides during proteolysis conducted in (18)O-water. Subsequent tandem mass spectrometric (MS/MS) analysis of the selected cross-linked peptide candidates led to the identification of two intermolecular cross-links, Lys(428)(CYP2E1)-Asp(53)(b(5)) and Lys(434)(CYP2E1)-Glu(56)(b(5)), which provides the first direct experimental evidence for the interacting orientations of a microsomal P450 and its redox partner. The biological importance of the two ion pairs for the CYP2E1-b(5) interaction, and the stimulatory effect of b(5), was confirmed by site-directed mutagenesis. Based on the characterized cross-links, a CYP2E1-b(5) complex model was constructed, leading to improved insights into the protein interaction. The described method is potentially useful for mapping the interactions of various P450 isoforms and their redox partners, because the method is relatively rapid and sensitive, and is capable of suggesting not only protein interacting regions, but also interacting orientations.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Base Sequence, Protein Conformation, Molecular Sequence Data, Cytochrome P-450 CYP2E1, Mass Spectrometry, Peptide Fragments, Recombinant Proteins, Kinetics, Cytochromes b5, Escherichia coli, Mutagenesis, Site-Directed, Humans, Trypsin, Amino Acid Sequence, Oxidation-Reduction, Acetaminophen, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%
gold