Evolution of gene families: the multidrug resistance transporter genes in five related yeast species
pmid: 16630275
Evolution of gene families: the multidrug resistance transporter genes in five related yeast species
The available genomic sequences of five closely related hemiascomycetous yeast species (Kluyveromyces lactis, Kluyveromyces waltii, Candida glabrata, Ashbya (Eremothecium) gossypii with Saccharomyces cerevisiae as a reference) were analysed to identify multidrug resistance (MDR) transport proteins belonging to the ATP-binding cassette (ABC) and major facilitator superfamilies (MFS), respectively. The phylogenetic trees clearly demonstrate that a similar set of gene (sub)families already existed in the common ancestor of all five fungal species studied. However, striking differences exist between the two superfamilies with respect to the evolution of the various subfamilies. Within the ABC superfamily all six half-size transporters with six transmembrane-spanning domains (TMs) and most full-size transporters with 12 TMs have one and only one gene per genome. An exception is the PDR family, in which gene duplications and deletions have occurred independently in individual genomes. Among the MFS transporters, the DHA2 family (TC 2.A.1.3) is more variable between species than the DHA1 family (TC 2.A.1.2). Conserved gene order relationships allow to trace the evolution of most (sub)families, for which the Kluyveromyces lactis genome can serve as an optimal scaffold. Cross-species sequence alignment of orthologous upstream gene sequences led to the identification of conserved sequence motifs ("phylogenetic footprints"). Almost half of them match known sequence motifs for the MDR regulators described in S. cerevisiae. The biological significance of those and of the novel predicted motifs awaits to be confirmed experimentally.
- Comenius University Slovakia
- Martin Luther University Halle-Wittenberg Germany
Evolution, Molecular, Fungal Proteins, Drug Resistance, Multiple, Fungal, Yeasts, Genes, Fungal, Biological Transport, Active, ATP-Binding Cassette Transporters, Multidrug Resistance-Associated Proteins, Regulatory Sequences, Nucleic Acid, Antiporters
Evolution, Molecular, Fungal Proteins, Drug Resistance, Multiple, Fungal, Yeasts, Genes, Fungal, Biological Transport, Active, ATP-Binding Cassette Transporters, Multidrug Resistance-Associated Proteins, Regulatory Sequences, Nucleic Acid, Antiporters
43 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
