Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CNR ExploRA
Article . 2009
Data sources: CNR ExploRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2009
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2009
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2009
Data sources: CNR ExploRA
versions View all 9 versions

Drosophila Dgt6 Interacts with Ndc80, Msps/XMAP215, and γ-Tubulin to Promote Kinetochore-Driven MT Formation

Authors: E Bucciarelli; C Pellacani; V Naim; A Palena; M Gatti; MP Somma;

Drosophila Dgt6 Interacts with Ndc80, Msps/XMAP215, and γ-Tubulin to Promote Kinetochore-Driven MT Formation

Abstract

In centrosome-containing cells, spindle assembly relies on microtubules (MTs) nucleated from both centrosomes and chromosomes. Recent work has suggested that additional spindle MTs can be nucleated by gamma-tubulin ring complexes (gamma-TuRCs) that associate laterally with preexisting spindle MTs, leading to spindle amplification. It has been proposed that in Drosophila S2 cells, gamma-TuRCs are anchored to the spindle MTs by augmin, a multiprotein complex that contains at least eight subunits. Here we show that the Dgt6 component of augmin is primarily required for kinetochore fiber (k-fiber) formation. An analysis of MT regrowth after cold exposure showed that formation of kinetochore-driven k-fibers is severely impaired in Dgt6-depleted cells. In control cells, these fibers are enriched in Dgt6, gamma-tubulin, and Msps/XMAP215. Consistent with these results, Dgt6 coprecipitates with Msps, D-TACC, gamma-tubulin, Ndc80, and Nuf2. However, RNA interference (RNAi)-mediated inhibition of gamma-tubulin, Msps/XMAP215, or Ndc80/Hec1 reduced but did not abolish k-fiber regrowth. These results indicate that Dgt6 plays a pivotal role in kinetochore-driven k-fiber formation, mediating nucleation and/or initial stabilization of chromosome-induced MTs. We propose that Dgt6 binds and stabilizes nascent chromatin-induced MTs, facilitating their interaction with the Ndc80-Nuf2 complex. Dgt6 may also promote elongation of kinetochore-driven k-fibers through its interaction with gamma-tubulin and Msps.

Keywords

Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), O, Spindle Apparatus, L, Microtubules, I, Chromosomes, E, C, Tubulin, Chromosome Segregation, B, Animals, Drosophila Proteins, CELLBIO, Drosophila, Kinetochores, Microtubule-Associated Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
Green
hybrid