Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins

Authors: Byung-Hoon, Kim; Fritz, Schöffl;

Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins

Abstract

The activity of the Arabidopsis heat shock transcription factor (HSF) is repressed at normal conditions but activated by cellular stresses. Circumstantial evidence suggests that HSP70 may function as a negative feedback regulator of HSF activity. Here the interaction between HSF and HSP70 is reported using electrophoretic mobility shift and yeast two-hybrid assays. Subdomain mapping indicates an interaction of the activation domain and DNA-binding domain of HSF1 with HSP70.

Related Organizations
Keywords

Arabidopsis Proteins, Arabidopsis, HSC70 Heat-Shock Proteins, Electrophoretic Mobility Shift Assay, DNA-Binding Proteins, Plant Leaves, Heat Shock Transcription Factors, Two-Hybrid System Techniques, HSP70 Heat-Shock Proteins, Heat-Shock Proteins, Molecular Chaperones, Plant Proteins, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 10%
Top 10%
bronze