Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Structurearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Structure
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Structure
Article . 1995
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Structure
Article . 1995 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Structure
Article . 1995
versions View all 4 versions

Activity of the MAP kinase ERK2 is controlled by a flexible surface loop

Authors: Zhang, Jiandong; Zhang, Faming; Ebert, Douglas; Cobb, Melanie H; Goldsmith, Elizabeth J;

Activity of the MAP kinase ERK2 is controlled by a flexible surface loop

Abstract

The mitogen-activated protein (MAP) kinase, ERK2, is a tightly regulated enzyme in the ubiquitous Ras-activated protein kinase cascade. ERK2 is activated by phosphorylation at two sites, Y185 and T183, that lie in the phosphorylation lip at the mouth of the catalytic site. To ascertain the role of these two residues in securing the low-activity conformation of the enzymes we have carried out crystallographic analyses and assays of phosphorylation-site mutants of ERK2.The crystal structures of four mutants, T183E (threonine at residue 183 is replaced by glutamate), Y185E, Y185F and the double mutant T183E/Y185E, were determined. When T183 is replaced by glutamate, few conformational changes are observed. By contrast, when Y185 is replaced by glutamate, 19 residues become disordered, including the entire phosphorylation lip and an adjacent loop. The conservative substitution of phenylalanine for Y185 also induces relatively large conformational changes. A binding site for phosphotyrosine in the active enzyme is putatively identified on the basis of the high-resolution refinement of the structure of wild-type ERK2.The remarkable disorder observed throughout the phosphorylation lip when Y185 is mutated shows that the stability of the phosphorylation lip is rather low. Therefore, only modest amounts of binding energy will be required to dislodge the lip for phosphorylation, and it is likely that these residues will be involved in conformational changes associated with both with binding to kinases and phosphatases and with activation. Furthermore, the low-activity structure is specifically dependent on Y185, whereas there is no such dependency on T183. Both residues, however, participate in forming the active enzyme, contributing to its tight control.

Keywords

Models, Molecular, Protein Conformation, Molecular Sequence Data, Glycine, Glutamic Acid, Protein Serine-Threonine Kinases, Crystallography, X-Ray, Structure-Activity Relationship, Structural Biology, Amino Acid Sequence, Phosphorylation, crystallography, Phosphotyrosine, Molecular Biology, Mitogen-Activated Protein Kinase 1, Binding Sites, Molecular Structure, phosphorylation sites, MEK, Enzyme Activation, Phosphothreonine, Calcium-Calmodulin-Dependent Protein Kinases, Tyrosine, MAP kinase ERK2, Crystallization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    121
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
121
Top 10%
Top 1%
Top 1%
hybrid