Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

In vitro binding properties of tumor suppressor p53 with PUMA and NOXA

Authors: So Young, Park; Mi Suk, Jeong; Se Bok, Jang;

In vitro binding properties of tumor suppressor p53 with PUMA and NOXA

Abstract

The p53-upregulated modulator of apoptosis (Puma) and Noxa, are direct targets in p53-mediated apoptosis localized to the mitochondria. Tumor suppressor p53 induces apoptosis by transcriptional induction of Puma and Noxa, which encode proapoptotic BH3-only member Bcl-1 family proteins. However, at a molecular level, the mechanism of action of Puma and Noxa proteins remain poorly defined. In addition, there have been no reports on whether or not p53 directly interacts with Puma and Noxa, in vitro. Here, we provide evidence indicating that the DNA binding domain (DBD) of p53 directly interacted with the BH3 domains of human PUMA and NOXA. Our studies revealed that PUMA has a weak affinity for p53, but NOXA has significant affinity for p53. In this study, we developed a molecular docking model using homology modeling based on the structures of truncated p53, PUMA and NOXA. In addition, we investigated whether or not six mutants of p53 (K101A, T102A, L111A, D186A, G199A and S227A) were able to bind to PUMA and NOXA. Four structure-based mutations (T102A, L111A, D186A and G199A) disrupted the p53-PUMA/NOXA interaction. Our study suggested that these four mutations lowered the stability of the p53 DBD domain and induced aggregation of structurally destabilized p53, and thus disrupted the p53-PUMA/NOXA interaction.

Related Organizations
Keywords

DNA, Recombinant Proteins, Protein Structure, Tertiary, Proto-Oncogene Proteins c-bcl-2, Proto-Oncogene Proteins, Mutation, Escherichia coli, Humans, Tumor Suppressor Protein p53, Apoptosis Regulatory Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%