Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1996 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Molecular Genetic Analysis of Volatile-Anesthetic Action

Authors: R L, Keil; D, Wolfe; T, Reiner; C J, Peterson; J L, Riley;

Molecular Genetic Analysis of Volatile-Anesthetic Action

Abstract

The mechanism(s) and site(s) of action of volatile inhaled anesthetics are unknown in spite of the clinical use of these agents for more than 150 years. In the present study, the model eukaryote Saccharomyces cerevisiae was used to investigate the action of anesthetic agents because of its powerful molecular genetics. It was found that growth of yeast cells is inhibited by the five common volatile anesthetics tested (isoflurane, halothane, enflurane, sevoflurane, and methoxyflurane). Growth inhibition by the agents is relatively rapid and reversible. The potency of these compounds as yeast growth inhibitors directly correlates with their lipophilicity as is predicted by the Meyer-Overton relationship, which directly correlates anesthetic potency of agents and their lipophilicity. The effects of isoflurane on yeast cells were characterized in the most detail. Yeast cells survive at least 48 h in a concentration of isoflurane that inhibits colony formation. Mutants resistant to the growth-inhibitory effects of isoflurane are readily selected. The gene identified by one of these mutations, zzz4-1, has been cloned and characterized. The predicted ZZZ4 gene product has extensive homology to phospholipase A2-activating protein, a GO effector protein of mice. Both zzz4-1 and a deletion of ZZZ4 confer resistance to all five of the agents tested, suggesting that signal transduction may be involved in the response of these cells to volatile anesthetics.

Keywords

Methyl Ethers, Base Sequence, Isoflurane, Genes, Fungal, Molecular Sequence Data, Proteins, Enflurane, Fungal Proteins, Mice, Methoxyflurane, Oligodeoxyribonucleotides, Mutagenesis, Anesthetics, Inhalation, Animals, Amino Acid Sequence, Carrier Proteins, DNA, Fungal, Halothane, Adaptor Proteins, Signal Transducing, Ethers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Average
Top 10%
Top 10%
bronze