Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

A Role of Receptor Notch in Ligand cis-Inhibition in Drosophila

Authors: Isabelle Becam; Ulla-Maj Fiuza; Marco Milán; Alfonso Martinez Arias;

A Role of Receptor Notch in Ligand cis-Inhibition in Drosophila

Abstract

Notch and its ligands mediate short-range cell interactions that play a conserved role in inducing cell fate specification. Several regulatory mechanisms have been described to ensure robust polarized signaling from signal-sending to signal-receiving cells. High levels of ligand expression activate Notch in nearby cells and exert a cell-autonomous dominant-negative effect on Notch activity. This regulatory process is called cis-inhibition and helps to restrict Notch activation to signal-receiving cells. By combining genetic mosaics in the Drosophila wing primordium with cell culture assays, we present evidence here that Notch promotes the clearance of Serrate ligand from the cell surface and exerts an inhibitory effect on the activity of Serrate expressed in the same cell. These regulatory mechanisms are independent of Notch-mediated transcription and are executed by the extracellular domain of Notch. We show that this process is required to block Serrate-mediated activation of Notch in the signal-sending cell population and helps to restrict Notch activation to the signal-receiving cells. Altogether, our results, in concert with previous results on ligand-mediated Notch cis-inhibition, indicate that mutual inhibition between ligand and receptor in signal-sending cells helps to block Notch activity in these cells and to restrict receptor activation in signal-receiving cells.

Keywords

DEVBIO, Genes, Insect, Ligands, Animals, Genetically Modified, Animals, Drosophila Proteins, Wings, Animal, Serrate-Jagged Proteins, Agricultural and Biological Sciences(all), Receptors, Notch, Biochemistry, Genetics and Molecular Biology(all), Mosaicism, Calcium-Binding Proteins, Cell Membrane, Genetic Complementation Test, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Protein Structure, Tertiary, SIGNALING, Intercellular Signaling Peptides and Proteins, CELLBIO, Drosophila, Mutant Proteins, Jagged-1 Protein, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
hybrid