Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 1983 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella.

Authors: Hoops, Harold J.; Witman, George B.;

Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella.

Abstract

Analysis of serial cross-sections of the Chlamydomonas flagellum reveals several structural asymmetries in the axoneme. One doublet lacks the outer dynein arm, has a beak-like projection in its B-tubule, and bears a two-part bridge that extends from the A-tubule of this doublet to the B-tubule of the adjacent doublet. The two doublets directly opposite the doublet lacking the arm have beak-like projections in their B-tubules. These asymmetries always occur in the same doublets from section to section, indicating that certain doublets have consistent morphological specializations. These unique doublets give the axoneme an inherent structural polarity. All three specializations are present in the proximal portion of the axoneme; based on their frequency in random cross-sections of isolated axonemes, the two-part bridge and the beak-like projections are present in the proximal one quarter and one half of the axoneme, respectively, and the outer arm is absent from the one doublet greater than 90% of the axoneme's length. The outer arm-less doublet of each flagellum faces the other flagellum, indicating that each axoneme has the same rotational orientation relative to the direction of its effective stroke. This strongly suggests that the direction of the effective stroke is controlled by a structural component within the axoneme. The striated fibers are associated with specific triplets in a manner suggesting that they play a role in setting up or maintaining the 180 degrees rotational symmetry of the two flagella.

Country
United States
Related Organizations
Keywords

Microscopy, Algae, Cells, Chlamydomonas, Dyneins, Cell Biology, Electron, Microtubules, Dynein ATPase, Microscopy, Electron, Flagella

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    237
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
237
Top 1%
Top 1%
Top 10%
bronze