Powered by OpenAIRE graph

Peptide-Binding Sites As Revealed by the Crystal Structures of the Human Hsp40 Hdj1 C-Terminal Domain in Complex with the Octapeptide from Human Hsp70

Authors: Hironori, Suzuki; Shuji, Noguchi; Hiroshi, Arakawa; Tadaaki, Tokida; Mariko, Hashimoto; Yoshinori, Satow;

Peptide-Binding Sites As Revealed by the Crystal Structures of the Human Hsp40 Hdj1 C-Terminal Domain in Complex with the Octapeptide from Human Hsp70

Abstract

Heat shock protein (Hsp) 40s play essential roles in cellular processes by cooperating with Hsp70 proteins. Hsp40 proteins recognize non-native polypeptides, deliver these peptides to Hsp70 proteins, and stimulate the ATPase activity of Hsp70 proteins to facilitate the correct folding of the polypeptides. We have determined the crystal structures of the C-terminal peptide-binding domain of human Hsp40 Hdj1 (CTD) and of its complex with the C-terminal octapeptide of human Hsp70, (634')GPTIEEVD(641'). CTD exists as a twisted, horseshoe-shaped homodimer. The protomer consists of two domains, I and II, with similar topologies. The octapeptides are located in two sites, 1 and 2, of domain I. In site 1, the octapeptide forms an antiparallel β-sheet with CTD. The negatively charged residues of the EEVD motif in the octapeptide form electrostatic interactions with the positively charged Lys residues of CTD. The Ile side chain of the octapeptide fits into the narrow concave formed by the hydrophobic residues of CTD. In site 2, the octapeptide also forms an antiparallel β-sheet with CTD, and the EEVD motif forms electrostatic interactions. The side chains of Pro and Ile of the octapeptide interact with the hydrophobic surface region of CTD site 2, which is broader and shallower than the concave binding region of site 1. This region seems to be capable of binding hydrophobic side chains that are bulkier than the Ile side chain. The roles of these two peptide-binding sites of Hdj1 are discussed.

Related Organizations
Keywords

Models, Molecular, Binding Sites, Protein Conformation, HSP40 Heat-Shock Proteins, Crystallography, X-Ray, Protein Structure, Tertiary, Humans, HSP70 Heat-Shock Proteins, Amino Acid Sequence, Protein Multimerization, Oligopeptides, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%