Discovery of SARS-CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput Screening and a FlipGFP-Based Reporter Assay
Discovery of SARS-CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput Screening and a FlipGFP-Based Reporter Assay
The papain-like protease (PLpro) of SARS-CoV-2 is a validated antiviral drug target. Through a fluorescence resonance energy transfer-based high-throughput screening and subsequent lead optimization, we identified several PLpro inhibitors including Jun9-72-2 and Jun9-75-4 with improved enzymatic inhibition and antiviral activity compared to GRL0617, which was reported as a SARS-CoV PLpro inhibitor. Significantly, we developed a cell-based FlipGFP assay that can be applied to predict the cellular antiviral activity of PLpro inhibitors in the BSL-2 setting. X-ray crystal structure of PLpro in complex with GRL0617 showed that binding of GRL0617 to SARS-CoV-2 induced a conformational change in the BL2 loop to a more closed conformation. Molecular dynamics simulations showed that Jun9-72-2 and Jun9-75-4 engaged in more extensive interactions than GRL0617. Overall, the PLpro inhibitors identified in this study represent promising candidates for further development as SARS-CoV-2 antivirals, and the FlipGFP-PLpro assay is a suitable surrogate for screening PLpro inhibitors in the BSL-2 setting.
- State University System of Florida United States
- National and Kapodistrian University of Athens Greece
- Florida Southern College United States
- University of Arizona United States
- National and Kapodistrian University of Athens (NTUA Greece
Chemistry, QD1-999
Chemistry, QD1-999
24 Research products, page 1 of 3
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2023IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2020IsRelatedTo
- 2020IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).163 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
