Powered by OpenAIRE graph
Bloodarrow_drop_down
Blood
Article . 2005 . Peer-reviewed
Data sources: Crossref
Blood
Article . 2005
versions View all 2 versions

Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation

Authors: Carlos Cabañas; Carlos Cabañas; Carlos Cabañas; María Dolores Gutiérrez-López; María Dolores Gutiérrez-López; María Dolores Gutiérrez-López; María Yáñez-Mó; +20 Authors

Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation

Abstract

AbstractTetraspanins associate with several transmembrane proteins forming microdomains involved in intercellular adhesion and migration. Here, we show that endothelial tetraspanins relocalize to the contact site with transmigrating leukocytes and associate laterally with both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Alteration of endothelial tetraspanin microdomains by CD9–large extracellular loop (LEL)–glutathione S–transferase (GST) peptides or CD9/CD151 siRNA oligonucleotides interfered with ICAM-1 and VCAM-1 function, preventing lymphocyte transendothelial migration and increasing lymphocyte detachment under shear flow. Heterotypic intercellular adhesion mediated by VCAM-1 or ICAM-1 was augmented when expressed exogenously in the appropriate tetraspanin environment. Therefore, tetraspanin microdomains have a crucial role in the proper adhesive function of ICAM-1 and VCAM-1 during leukocyte adhesion and transendothelial migration.

Keywords

Umbilical Veins, Membrane Glycoproteins, Vascular Cell Adhesion Molecule-1, Tetraspanin 24, Intercellular Adhesion Molecule-1, Tetraspanin 29, Protein Structure, Tertiary, Membrane Microdomains, Antigens, CD, Cell Movement, Cell Adhesion, Leukocytes, Humans, Endothelium, Vascular, RNA, Small Interfering, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    191
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
191
Top 10%
Top 10%
Top 1%