Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Protein Engineering ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein Engineering Design and Selection
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Binding specificities of the GYF domains from two Saccharomyces cerevisiae Paralogs

Authors: Alexander, Georgiev; Michael, Sjöström; Ake, Wieslander;

Binding specificities of the GYF domains from two Saccharomyces cerevisiae Paralogs

Abstract

We have used multivariate statistics and z-scales to represent peptide sequences in a PLS-QSAR model of previously studied binding affinities [Kofler,M., Motzny,K. and Freund,C. (2005b) Mol. Cell. Proteomics, 4, 1797-1811.] of two GYF domains to an array of immobilized synthetic peptides. As a result, we established structural determinants of the binding specificities of the two proteins. Our model was used to define new sets of yeast proteins potentially interacting with Syh1 (YPL105C) and Smy2 (YBR172C). These sets were subsequently examined for co-occurrence of Gene Ontology terms, leading to suggest a group of likely interacting proteins with a common function in mRNA catabolism. Finally, subcellular localization of a GFP-fused Syh1 and Smy2 reinforced the possibility that these proteins reside in cytoplasmic sites of mRNA degradation, thereby providing experimental confirmation to the predictions from the model.

Related Organizations
Keywords

Cytoplasm, Green Fluorescent Proteins, Reproducibility of Results, Saccharomyces cerevisiae, Models, Theoretical, Protein Structure, Tertiary, Fungal Proteins, Structure-Activity Relationship, RNA, Messenger, Least-Squares Analysis, Peptides, Algorithms, Software, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%
bronze