Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Stem Cell Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cell Research
Article . 2014 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cell Research
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cell Research
Article . 2014
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cell Research
Article . 2014
Data sources: DOAJ
versions View all 4 versions

JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity

Authors: Ke Yao; Myoung Ok Ki; Hanyong Chen; Yong-Yeon Cho; Sung-Hyun Kim; Dong Hoon Yu; Sung-Young Lee; +6 Authors

JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity

Abstract

Embryonic stem (ES) cells are pluripotent cells with the capacity for unlimited self-renewal or differentiation. Inhibition of MAPK pathways enhances mouse ES cell pluripotency characteristics. Compared to wildtype ES cells, jnk2(-/-) ES cells displayed a much higher growth rate. To determine whether JNKs are required for stem cell self-renewal or differentiation, we performed a phosphorylation kinase array assay to compare mouse ES cells under LIF+ or LIF- culture conditions. The data showed that activation of JNKs was induced by LIF withdrawal. We also found that JNK1 or 2 phosphorylated Klf4 at threonines 224 and 225. Activation of JNK signaling and phosphorylation of Klf4 inhibited Klf4 transcription and transactivation activity. Importantly, jnk1(-/-) and jnk2(-/-) murine embryonic fibroblasts (MEFs) exhibited a significantly greater potency in the ability to increase the number of iPS colonies compared with jnk wildtype MEFs. Overall, our results demonstrated that JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity.

Related Organizations
Keywords

QH301-705.5, Molecular Sequence Data, Kruppel-Like Transcription Factors, Leukemia Inhibitory Factor, Kruppel-Like Factor 4, Mice, Animals, Humans, Mitogen-Activated Protein Kinase 9, Mitogen-Activated Protein Kinase 8, Amino Acid Sequence, Biology (General), Phosphorylation, RNA, Small Interfering, Embryonic Stem Cells, Medicine(all), Anthracenes, Cell Biology, Cellular Reprogramming, HEK293 Cells, RNA Interference, Developmental Biology, Protein Binding, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
gold