Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer

Authors: J. Jin; J. Pan; T Chen; Hui Li; Xinghai Yang; Ping Wang; Q Deng; +7 Authors

USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer

Abstract

The oncoprotein c-Myc is frequently overexpressed in many cancers and is essential for cancer cell proliferation. Ubiquitin-proteasome-dependent degradation is one of the main ways in which cells control c-Myc abundance at a post-translational level. However, the underlying mechanism by which c-Myc is directly deubiquitinated is not fully understood. In this study, by screening ubiquitin-specific proteases (USPs) that may regulate c-Myc stability, we identified USP37 as a novel deubiquitinating enzyme (DUB) that stabilizes c-Myc via direct binding. The overexpression of USP37 markedly increases c-Myc abundance by blocking its degradation, whereas the depletion of USP37 promotes c-Myc degradation and reduces c-Myc levels. Further studies indicate that USP37 directly interacts with c-Myc and deubiquitinates c-Myc in a DUB activity-dependent manner. Functionally, USP37 regulates cell proliferation and the Warburg effect by regulating c-Myc levels. Clinically, USP37 is significantly upregulated in human lung cancer tissues, where its expression is positively correlated with c-Myc protein expression. Thus, our findings uncover a previously unrecognized role for USP37 in the regulation of c-Myc stability in lung cancer and suggest that USP37 might be a potential therapeutic target for the treatment of lung cancer.

Related Organizations
Keywords

Lung Neoplasms, Protein Stability, Ubiquitination, Adenocarcinoma, Proto-Oncogene Proteins c-myc, HEK293 Cells, Endopeptidases, Humans, Glycolysis, Cell Proliferation, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 1%
Top 10%
Top 10%
bronze