Powered by OpenAIRE graph

Recombinant Human Annexin A5 Can Repair the Disrupted Cardiomyocyte Adherens Junctions in Endotoxemia

Authors: Changping, Gu; Mengjie, Liu; Tao, Zhao; Lijie, Zhai; Yuelan, Wang;

Recombinant Human Annexin A5 Can Repair the Disrupted Cardiomyocyte Adherens Junctions in Endotoxemia

Abstract

Recombinant human annexin A5 (Anx5) is known to protect cardiac function during endotoxemia, although the underlying mechanisms have yet to be elucidated. In this study, we demonstrated that Anx5 could repair the disrupted cardiomyocyte adherens junctions and improve the myocardial contractile function in lipopolysaccharide (LPS)-induced endotoxemia. Mechanistic studies revealed that Anx5 could antagonize the disassociation between p120-catenin (p120) and N-cadherin as well as the dephosphorylation of p120 in LPS-treated cardiomyocytes. Small interference RNA and specific inhibitors experiment demonstrated that Anx5 regulated p120 functions by inhibition of p21-activated kinase 5 in a protein kinase Cα-dependent way. Moreover, Anx5 could inhibit nuclear factor κB activation and downregulate the level of inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β, which contributed to improving tissue pathological damage in LPS-induced mouse endotoxemia model. Taken together, Anx5 could protect cardiomyocytes adherens junctions and improve myocardial contractile function via regulation of p120 and anti-inflammation in LPS-induced endotoxemia. This study provided novel insights in the prevention and treatment of septic shock.

Related Organizations
Keywords

Lipopolysaccharides, Male, Tumor Necrosis Factor-alpha, Interleukin-1beta, Catenins, Adherens Junctions, Myocardial Contraction, Endotoxemia, Recombinant Proteins, Disease Models, Animal, Mice, Animals, Humans, Myocytes, Cardiac, Annexin A5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average