Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2010 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Pref-1 Interacts with Fibronectin To Inhibit Adipocyte Differentiation

Authors: Yuhui, Wang; Ling, Zhao; Cynthia, Smas; Hei Sook, Sul;

Pref-1 Interacts with Fibronectin To Inhibit Adipocyte Differentiation

Abstract

Pref-1/Dlk1 is made as an epidermal growth factor (EGF) repeat-containing transmembrane protein but is cleaved by tumor necrosis factor alpha converting enzyme (TACE) to generate a biologically active soluble form. Soluble Pref-1 inhibits adipocyte differentiation through the activation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and the subsequent upregulation of Sox9 expression. However, others have implicated Notch in Pref-1 signaling and function. Here, we show that Pref-1 does not interact with, or require, Notch for its function. Instead, we show a direct interaction of Pref-1 and fibronectin via the Pref-1 juxtamembrane domain and fibronectin C-terminal domain. We also show that fibronectin is required for the Pref-1-mediated inhibition of adipocyte differentiation, the activation of ERK/MAPK, and the upregulation of Sox9. Furthermore, disrupting fibronectin binding to integrin by the addition of RGD peptides or by the knockdown of alpha 5 integrin prevents the Pref-1 inhibition of adipocyte differentiation. Pref-1 activates the integrin downstream signaling molecules, FAK and Rac, and ERK activation by Pref-1 is blunted by the knockdown of Rac or by the forced expression of dominant-negative Rac. We conclude that, by interacting with fibronectin, Pref-1 activates integrin downstream signaling to activate MEK/ERK and to inhibit adipocyte differentiation.

Related Organizations
Keywords

Receptors, Notch, MAP Kinase Signaling System, Calcium-Binding Proteins, Cell Differentiation, SOX9 Transcription Factor, Integrin alpha5, In Vitro Techniques, Fibronectins, Protein Structure, Tertiary, Up-Regulation, Mice, 3T3-L1 Cells, Gene Knockdown Techniques, Adipocytes, Animals, Humans, Intercellular Signaling Peptides and Proteins, RNA, Small Interfering, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    124
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
124
Top 10%
Top 10%
Top 10%
bronze