Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Cell Physiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Cell Physiology
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

ATP downregulates P2X7 and inhibits osteoclast formation in RAW cells

Authors: Jeffrey F, Hiken; Thomas H, Steinberg;

ATP downregulates P2X7 and inhibits osteoclast formation in RAW cells

Abstract

Multinucleated giant cells derive from fusion of precursor cells of the macrophage lineage. It has been proposed that the purinoreceptor P2X7 is involved in this fusion process. Prolonged exposure of macrophages to ATP, the ligand for P2X7, induces the formation of plasma membrane pores and eventual cell death. We took advantage of this cytolytic property to select RAW 264.7 (RAW) cells that lacked P2X7 function by maintaining them in ATP (RAW ATP-R cells). RAW ATP-R cells failed to fuse to form multinucleated osteoclasts in response to receptor activator nuclear factor-κB ligand, although they did become positive for the osteoclast marker enzyme tartrate-resistant acid phosphatase, and upregulated expression of other osteoclast marker genes. RAW ATP-R cells and wild-type RAW cells expressed similar amounts of P2X7 protein, but little P2X7 was present on the surface of RAW ATP-R cells. After ATP was removed from the medium of RAW ATP-R cells, the cells reexpressed P2X7 on the cell surface, regained sensitivity to ATP, and formed multinucleated osteoclasts. These results suggest that P2X7 or another protein that is downregulated in concert with P2X7 is involved either in the mechanics of cell fusion to form osteoclasts or in a signaling pathway proximal to this event. These results also suggest that P2X7 may be regulated by ligand-mediated internalization and that extracellular ATP may regulate the formation of osteoclasts and other multinucleated giant cells.

Related Organizations
Keywords

Membrane Glycoproteins, Receptor Activator of Nuclear Factor-kappa B, Receptors, Purinergic P2, Macrophages, RANK Ligand, NF-kappa B, Fluorescent Antibody Technique, Osteoclasts, Cell Differentiation, Giant Cells, Adenosine Monophosphate, Cell Line, Adenosine Diphosphate, Mice, Adenosine Triphosphate, Pyridoxal Phosphate, Animals, Carrier Proteins, Extracellular Space, Platelet Aggregation Inhibitors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
bronze