Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Immunological Review...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Immunological Reviews
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease

Authors: Jeffrey L, Browning;

Inhibition of the lymphotoxin pathway as a therapy for autoimmune disease

Abstract

Summary: The lymphotoxin (LT) system is part of the tumor necrosis factor family and is required for lymph node development. It has provided a wonderful tool for the dissection of processes critical not only for lymphoid organ development but also the maintenance of the adult immune architecture and the formation of ectopic organized lymphoid tissues in chronically inflamed sites. A soluble lymphotoxin‐β receptor‐immunoglobulin (LTβR‐Ig) fusion protein can block this pathway and is currently being tested in the treatment of autoimmune disease. This review focuses on the immunological consequences of combined LT and LIGHT inhibition with LTβR‐Ig administration as distinct from the developmental biology.

Related Organizations
Keywords

Clinical Trials as Topic, Lymphoid Tissue, Recombinant Fusion Proteins, Lymphotoxin alpha1, beta2 Heterotrimer, Models, Immunological, Cell Differentiation, Autoimmune Diseases, Cell Movement, Lymphotoxin beta Receptor, Animals, Humans, Lymphocytes, Chemokines, Stromal Cells, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%