Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Mitochondrial protein cyclophilin-D-mediated programmed necrosis attributes to berberine-induced cytotoxicity in cultured prostate cancer cells

Authors: Feng Guo; Xing-hua Gao; Yan-lin Wu; Longyang Zhang;

Mitochondrial protein cyclophilin-D-mediated programmed necrosis attributes to berberine-induced cytotoxicity in cultured prostate cancer cells

Abstract

The prostate cancer is one of the leading causes of men's cancer mortality. The development of alternative chemotherapeutic strategies is urgent. Berberine has displayed significant anti-prostate cancer activities. The underlying mechanisms are not fully understood. In the current study, we found that berberine induced apoptosis and programmed necrosis in cultured prostate cancer cells (LNCaP and PC-82 lines), and necrosis weighted more than apoptosis in contributing berberine's cytotoxicity. We demonstrated that mitochondrial protein cyclophilin-D (Cyp-D) is required for berberine-induced programmed necrosis. Inhibition of Cyp-D by its inhibitors cyclosporin A (CSA) or sanglifehrin A (SFA), and by Cyp-D shRNA depletion alleviated berberine-induced prostate cancer cell necrosis (but not apoptosis). Our data found that in prostate cancer cells, berberine induced reactive oxygen species (ROS) production, which dictated P53 translocation to mitochondria, where it physically interacted with Cyp-D to open mitochondrial permeability transition pore (mPTP). The anti-oxidant N-acetylcysteine (NAC), the P53 inhibitor pifithrin-α (PFTα) as well as P53 siRNA knockdown suppressed berberine-induced P53 mitochondrial translocation and Cyp-D association, thus inhibiting mitochondrial membrane potential (MMP) decrease and prostate cancer cell necrosis. In summary, the results of the present study provide mechanistic evidence that both apoptosis and programmed necrosis attribute to berberine's cytotoxicity in prostate cancer cells.

Keywords

Male, Berberine, Cell Survival, Prostatic Neoplasms, Mitochondrial Proteins, Cyclophilins, Necrosis, Cell Line, Tumor, Humans, Tumor Suppressor Protein p53, Reactive Oxygen Species

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%