Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

CAND1-dependent control of cullin 1-RING Ub ligases is essential for adipogenesis

Authors: Dawadschargal Dubiel; Xiaohua Huang; Wolfgang Dubiel; Michael Naumann; Maria Elka Gierisch;

CAND1-dependent control of cullin 1-RING Ub ligases is essential for adipogenesis

Abstract

Cullin-RING ubiquitin (Ub) ligases (CRLs) are responsible for ubiquitinylation of approximately 20% of all proteins degraded by the Ub proteasome system (UPS). CRLs are regulated by the COP9 signalosome (CSN) and by Cullin-associated Nedd8-dissociated protein 1 (CAND1). The CSN is responsible for removal of Nedd8 from cullins inactivating CRLs. CAND1 modulates the assembly of F-box proteins into cullin 1-RING Ub ligases (CRL1s). We show that CAND1 preferentially blocks the integration of Skp2 into CRL1s. Suppression of CAND1 expression in HeLa cells leads to an increase of the Skp2 assembly into CRL1s and to significant reduction of the cyclin-dependent kinase (CDK) inhibitor p27. In contrary, CAND1 overexpression causes elevation of p27. The observed CAND1-dependent effects and CAND1 expression are independent of the CSN as demonstrated in CSN1 knockdown cells. Increase of p27 is a hallmark of preadipocyte differentiation to adipocytes (adipogenesis). We demonstrate that the accumulation of p27 is associated with an increase of CAND1 and a decrease of Skp2 during adipogenesis of human LiSa-2 preadipocytes. CAND1 knockdown reduces p27 and blocks adipogenesis. Due to the impact of CAND1 on Skp2 control, CAND1 could represent an important effector molecule in adipogenesis, but also in cancer development.

Keywords

Preadipocytes, Adipogenesis, Ubiquitination, Gene Expression Regulation, Developmental, p27, Cell Differentiation, Cell Biology, Cullin Proteins, Ligases, COP9 signalosome, Humans, Skp2, Molecular Biology, S-Phase Kinase-Associated Proteins, F-box proteins, Cyclin-Dependent Kinase Inhibitor p27, HeLa Cells, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
hybrid
Related to Research communities
Cancer Research