Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Induction of the Intronic Enhancer of the Human Ciliary Neurotrophic Factor Receptor (CNTFRä) Gene by the TR4 Orphan Receptor

Authors: Susan M. Smith; Chawnshang Chang; Win-Jing Young;

Induction of the Intronic Enhancer of the Human Ciliary Neurotrophic Factor Receptor (CNTFRä) Gene by the TR4 Orphan Receptor

Abstract

A conserved hormone response element, CNTFR-DR1 (5'-AGGTCAGAGGTCAGG-3'), has been identified in the 5th intron of the alpha component of the ciliary neurotrophic factor receptor (CNTFRalpha) gene for the human TR4 orphan receptor (TR4). Electrophoretic mobility shift assay showed a specific binding with high affinity (Kd = 0.066 nM) between TR4 and the CNTFR-DR1. A reporter gene assay using chloramphenicol acetyltransferase demonstrated that the 5th intron of CNTFRalpha has an enhancer activity which could be induced by TR4 in a dose-dependent manner. Furthermore, our in situ hybridization data showed that abundant TR4 transcripts were detected in adult brain, in regions of cortical and hippocampal neurons, as well as in many developing neural structures, including brain, spinal cord, ganglia (sympathetic and sensory), and neuronal epithelia (retinal, otic, olfactory, and gustatory). The striking similarities in the expression patterns of TR4 and CNTFRalpha in the developing and postnatal nervous systems further support the potential role of TR4 in neurogenesis. Collectively, these data suggest that the human CNTFRalpha gene could represent the first identified neural-specific gene induced by TR4.

Keywords

Adult, Cerebral Cortex, Chloramphenicol O-Acetyltransferase, Aging, Binding Sites, Ganglia, Sympathetic, Base Sequence, Brain, Gene Expression Regulation, Developmental, Hippocampus, Epithelium, Embryonic and Fetal Development, Enhancer Elements, Genetic, Ganglia, Sensory, Cricetinae, Animals, Humans, Amino Acid Sequence, Cloning, Molecular, Conserved Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Average
Top 10%
Top 10%
gold