Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naunyn-Schmiedeberg ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Naunyn-Schmiedeberg s Archives of Pharmacology
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Effects of fluorine-containing opener of ATP-sensitive potassium channels, pinacidil-derivative flocalin, on cardiac voltage-gated sodium and calcium channels

Authors: Oleg I, Voitychuk; Ruslan B, Strutynskyi; Olexiy O, Moibenko; Yaroslav M, Shuba;

Effects of fluorine-containing opener of ATP-sensitive potassium channels, pinacidil-derivative flocalin, on cardiac voltage-gated sodium and calcium channels

Abstract

Fluorine-containing pinacidil-derivative flocalin is an effective adenosine triphosphate-sensitive potassium (K(ATP))-channel opener with pronounced vasodilatory, cardioprotective effects and low general toxicity. By activating cardiac K(ATP) channels, flocalin hyperpolarizes cardiac myocytes, decreases their excitability, reduces Ca(2+) entry, and inhibits Ca(2+)-dependent signalling processes. Since our previous studies indicated that the drug also influences the rate of rise and amplitude of the cardiomyocyte's action potential, here we have investigated its possible actions on depolarizing inward currents through voltage-gated sodium (VGSC) and L-type calcium (VGCC) channels. Experiments were conducted on cultured cardiac myocytes prepared from the whole hearts of neonatal rats and maintained in culture for 1-3 days using whole-cell patch-clamp technique with no distinction of myocyte's type. Flocalin concentration dependently inhibited the Na(+) inward current through VGSCs with IC(50) = 17.4 μM and a maximal extent of 0.54, slowed down its inactivation kinetics, and hyperpolarized steady-state inactivation by 5.6 mV. The drug also inhibited calcium current through L-type VGCCs with IC(50) = 24.1 μM and a maximal block of 0.38, without affecting its inactivation but producing 5.3-mV hyperpolarization shifting of steady-state activation. Inhibition of both depolarizing currents by flocalin in addition to its ability to open K(ATP) channels enhances the suppressive action of the drug on cardiac excitability and broadens its pharmacological effects. Since, according to our previous data, cardiac K(ATP)-channel opening by flocalin occurs with ЕC(50) = 8 μM, the possibility of partial blockade of VGSC and L-type VGCCs should be considered when determining the therapeutic concentrations of the compound during its use as a cardioprotector.

Keywords

Cardiotonic Agents, Patch-Clamp Techniques, Calcium Channels, L-Type, Dose-Response Relationship, Drug, Pinacidil, Voltage-Gated Sodium Channels, Rats, Inhibitory Concentration 50, Animals, Newborn, KATP Channels, Animals, Myocytes, Cardiac, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average