Powered by OpenAIRE graph

ApoB mRNA editing is mediated by a coordinated modulation of multiple apoB mRNA editing enzyme components

Authors: Zhigang, Chen; Thomas L, Eggerman; Amy P, Patterson;

ApoB mRNA editing is mediated by a coordinated modulation of multiple apoB mRNA editing enzyme components

Abstract

Apolipoprotein (apo)B mRNA editing is accomplished by a large multiprotein complex. How these proteins interact to achieve the precise single-nucleotide change induced by this complex remains unclear. We investigated the relationship between altered apoB mRNA editing and changes in editing enzyme components to evaluate their roles in editing regulation. In the mouse fetal small intestine, we found that the dramatic developmental upregulation of apoB mRNA editing from ∼3% to 88% begins with decreased levels of inhibitory CUG binding protein 2 (CUGBP2) expression followed by increased levels of apoB mRNA editing enzyme (apobec)-1 and apobec-1 complementation factor (ACF) (4- and 8-fold) and then by decreased levels of the inhibitory components glycine-arginine-tyrosine-rich RNA binding protein (GRY-RBP) and heterogeneous nuclear ribonucleoprotein (hnRNP)-C1 (75% and 56%). In contrast, the expression of KH-type splicing regulatory protein (KSRP), apobec-1 binding protein (ABBP)1, ABBP2, and Bcl-2-associated athanogene 4 (BAG4) were unaltered. In the human intestinal cell line Caco-2, the increase of apoB mRNA editing from ∼1.7% to ∼23% was associated with 6- and 3.2-fold increases of apobec-1 and CUGBP2, respectively. In the mouse large intestine, the editing was 48% and had a 2.7-fold relatively greater CUGBP2 level. Caco-2 and the large intestine thus have increased instead of decreased CUGBP2 and a lower level of editing, suggesting that inhibitory CUGBP2 may play a critical role in the magnitude of editing regulation. Short interfering RNA-mediated gene-specific knockdown of CUGBP2, GRY-RBP, and hnRNP-C1 resulted in increased editing in Caco-2 cells, consistent with their known inhibitory function. These data suggest that a coordinated expression of editing components determines the magnitude and specificity of apoB mRNA editing.

Related Organizations
Keywords

Base Sequence, Reverse Transcriptase Polymerase Chain Reaction, RNA-Binding Proteins, Nerve Tissue Proteins, Gene Expression Regulation, Neoplastic, Mice, Fetus, Cell Line, Tumor, Intestine, Small, Animals, CELF Proteins, Humans, RNA Editing, RNA, Messenger, Caco-2 Cells, Apolipoproteins B, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%