Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2007 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Phospholipase Cγ2 Contributes to Light-Chain Gene Activation and Receptor Editing

Authors: Li, Bai; Yuhong, Chen; Yinghong, He; Xuezhi, Dai; Xueyan, Lin; Renren, Wen; Demin, Wang;

Phospholipase Cγ2 Contributes to Light-Chain Gene Activation and Receptor Editing

Abstract

Phospholipase Cgamma2 (PLCgamma2) is critical for pre-B-cell receptor (pre-BCR) and BCR signaling. Current studies discovered that PLCgamma2-deficient mice had reduced immunoglobulin lambda (Iglambda) light-chain usage throughout B-cell maturation stages, including transitional type 1 (T1), transitional type 2 (T2), and mature follicular B cells. The reduction of Iglambda rearrangement by PLCgamma2 deficiency was not due to specifically increased apoptosis or decreased proliferation of mutant Iglambda+ B cells, as lack of PLCgamma2 exerted a similar effect on apoptosis and proliferation of both Iglambda+ and Igkappa+ B cells. Moreover, PLCgamma2-deficient IgHEL transgenic B cells exhibited an impairment of antigen-induced receptor editing among both the endogenous lambda and kappa loci in vitro and in vivo. Importantly, PLCgamma2 deficiency impaired BCR-induced expression of IRF-4 and IRF-8, the two transcription factors critical for lambda and kappa light-chain rearrangements. Taken together, these data demonstrate that the PLCgamma2 signaling pathway plays a role in activation of light-chain loci and contributes to receptor editing.

Related Organizations
Keywords

Mice, Knockout, Transcriptional Activation, B-Lymphocytes, Phospholipase C gamma, Apoptosis, Mice, Transgenic, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Pre-B Cell Receptors, Interferon Regulatory Factors, Animals, Immunoglobulin Light Chains, Gene Rearrangement, B-Lymphocyte, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
bronze