Powered by OpenAIRE graph

Identification of Proteasome Components Required for Apical Localization of Chaoptin Using Functional Genomics

Authors: Hiroyuki, Yano; Miki, Yamamoto-Hino; Wakae, Awano; Kiyoko F, Aoki-Kinoshita; Kayoko, Tsuda-Sakurai; Hideyuki, Okano; Satoshi, Goto;

Identification of Proteasome Components Required for Apical Localization of Chaoptin Using Functional Genomics

Abstract

Abstract: the distinct localization of membrane proteins with regard to cell polarity is crucial for the structure and function of various organs in multicellular organisms. However, the molecules and mechanisms that regulate protein localization to particular subcellular domains are still largely unknown. To identify the genes involved in regulation of protein localization, the authors performed a large-scale screen using a Drosophila RNA interference (RNAi) library, by which Drosophila genes could be knocked down in a tissue- and stage-specific manner. Drosophila photoreceptor cells have a morphologically distinct apicobasal polarity, along which Chaoptin (Chp), a glycosylphosphatidylinositol (GPI)-anchored membrane protein, and the Na (+) , K(+) -ATPase are localized to the apical and basolateral domains, respectively. By examining the subcellular localization of these proteins, the authors identified 106 genes whose knockdown resulted in mislocalization of Chp and Na(+) , K(+) -ATPase. Gene ontology analysis revealed that the knockdown of proteasome components resulted in mislocalization of Chp to the basolateral plasma membrane. These results suggest that the proteasome is involved, directly or indirectly, in selective localization of Chp to the apical plasma membrane of Drosophila photoreceptor cells.

Keywords

Proteasome Endopeptidase Complex, Membrane Glycoproteins, Databases, Genetic, Animals, Cell Polarity, Drosophila Proteins, Drosophila, RNA Interference, Genomics, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average