Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Nerve growth factor nonresponsive pheochromocytoma cells: altered internalization results in signaling dysfunction

Authors: Eveleth, DD; Bradshaw, RA;

Nerve growth factor nonresponsive pheochromocytoma cells: altered internalization results in signaling dysfunction

Abstract

Variant rat pheochromocytoma (PC12) cells which fail to respond to nerve growth factor (NGF) (PC12nnr5) (Green, S. H., R. E. Rydel, J. L. Connoly, and L. A. Greene. 1986. J. Cell Biol. 102:830-843) bind NGF at both high and low affinity sites. Although still undefined at the molecular level, these have been referred to as type I (high) and type II (low) receptors. They are apparently composed of two membrane-bound proteins, p75 and the protooncogene trk, both of which bind NGF, and apparently contribute singularly or in concert to the two observed affinities, and to the promotion of the NGF effects. In native PC12 cells, only the high affinity receptors are apparently capable of mediating internalization and degradation. PC12nnr5 cells also display type I binding, but the subsequent internalization is not the same fashion as in the parental cell line, nor is it subjected to lysosomal degradation. Rather it is initially sequestered during the first 15 min, and is eventually released intact into the medium. In contrast, EGF is bound, internalized, and degraded by PC12nnr5 cells, albeit less efficiently than in the parent cells. These observations argue that the defect(s) preventing the PC12nnr5 variants from responding to NGF prevents competent internalization, which in the case of NGF, may be required for the full expression of activity. The absence of trk, as one alteration in PC12nnr5 cells (Loeb, D. M., J. Maragos, D. Martin-Zanca, M. V. Chao, L. F. Parada, and L. A. Greene. 1991. Cell. 66:961-966), is consistent with this conclusion.

Keywords

570, Biomedical and clinical sciences, Binding Sites, Epidermal Growth Factor, Prevention, 610, Receptors, Cell Surface, Receptors, Nerve Growth Factor, Biological Sciences, Medical and Health Sciences, PC12 Cells, Endocytosis, Biological sciences, Receptors, Cell Surface, Nerve Growth Factor, Animals, Biochemistry and Cell Biology, Nerve Growth Factors, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Average
Top 10%
Top 10%
Green
bronze