Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Meteorology and Atmo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Meteorology and Atmospheric Physics
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions

Impact of surface observations on simulation of rainfall over NCR Delhi using regional background error statistics in WRF-3DVAR model

Authors: S. C. Bhan; Sushil Kumar Dash; Dipak K. Sahu;

Impact of surface observations on simulation of rainfall over NCR Delhi using regional background error statistics in WRF-3DVAR model

Abstract

In this study, efforts are made to improve the simulation of heavy rainfall events over National Capital Region (NCR) Delhi during 2010 summer monsoon, using additional observations from automatic weather stations (AWS). Two case studies have been carried out to simulate the relative humidity, wind speed and precipitation over NCR Delhi in 48-h model integrations; one from 00UTC, August 20, 2010, and the other from 00UTC, September 12, 2010. Several AWS installed over NCR Delhi in the recent past provide valuable surface observations, which are assimilated into state-of-the-art weather research and forecasting (WRF) model using the three-dimensional variational data assimilation (3DVAR). The quality of background error statistics (BES) is a key component in successful 3DVAR data assimilation in a mesoscale model. In this study, the domain-dependent regional background error statistics (RBS) are estimated using National Meteorological Center method in the months of August and September 2010 and then compared with the global background error statistics (GBS) in the WRF model. The model simulations are analyzed and validated against AWS and radiosonde observations to quantify the impact of RBS. The root mean square differences in the spatial distributions of precipitation, relative humidity and wind speed at the surface showed significant differences between both the global and regional BES. Similar differences are also observed in the vertical distributions along the latitudinal cross section at 28.5°N. Model-simulated fields are analyzed at five different surface stations and one upper air station located in NCR Delhi. It is found that in 24-h model simulation, the RBS significantly improves the model simulations in case of precipitation, relative humidity and wind speed as compared to GBS.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average