Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computational and St...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computational and Structural Biotechnology Journal
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

A hallmark of phospholamban functional divergence is located in the N-terminal phosphorylation domain

Authors: Eli Fernández-de Gortari; Rodrigo Aguayo-Ortiz; Joseph M. Autry; L. Michel Espinoza-Fonseca;

A hallmark of phospholamban functional divergence is located in the N-terminal phosphorylation domain

Abstract

Sarcoplasmic reticulum Ca2+ pump (SERCA) is a critical component of the Ca2+ transport machinery in myocytes. There is clear evidence for regulation of SERCA activity by PLB, whose activity is modulated by phosphorylation of its N-terminal domain (residues 1-25), but there is less clear evidence for the role of this domain in PLB's functional divergence. It is widely accepted that only sarcolipin (SLN), a protein that shares substantial homology with PLB, uncouples SERCA Ca2+ transport from ATP hydrolysis by inducing a structural change of its energy-transduction domain; yet, experimental evidence shows that the transmembrane domain of PLB (residues 26-52, PLB26-52) partially uncouples SERCA in vitro. These apparently conflicting mechanisms suggest that PLB's uncoupling activity is encoded in its transmembrane domain, and that it is controlled by the N-terminal phosphorylation domain. To test this hypothesis, we performed molecular dynamics simulations (MDS) of the binary complex between PLB26-52 and SERCA. Comparison between PLB26-52 and wild-type PLB (PLBWT) showed no significant changes in the stability and orientation of the transmembrane helix, indicating that PLB26-52 forms a native-like complex with SERCA. MDS showed that PLB26-52 produces key intermolecular contacts and structural changes required for inhibition, in agreement with studies showing that PLB26-52 inhibits SERCA. However, deletion of the N-terminal phosphorylation domain facilitates an order-to-disorder shift in the energy-transduction domain associated with uncoupling of SERCA, albeit weaker than that induced by SLN. This mechanistic evidence reveals that the N-terminal phosphorylation domain of PLB is a primary contributor to the functional divergence among homologous SERCA regulators.

Keywords

Calcium pump, Sarcolipin, Molecular dynamics simulations, Phosphorylation domain, Functional divergence, TP248.13-248.65, Phospholamban, Biotechnology, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Green
gold