Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Other literature type . 2010
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Identifying the Quencher of Excited State Energy in Photosynthetic Antennae

Authors: Croce, Roberta; Dijkman, Patricia; Mozzo, Milena; Passarini, Francesca; Koehorst, Rob B.M.; Amerongen, Herbert van;

Identifying the Quencher of Excited State Energy in Photosynthetic Antennae

Abstract

Excess energy dissipation in plants in high-light conditions requires the formation of a quenching site. Although several different quenching mechanisms have been proposed, all of them involve pigment-pigment interactions between chromophores coordinated to the antenna complexes of Photosystem II. The best quencher-candidates are Chlorophyll-Chlorophyll and Chlorophyll-carotenoid pairs, likely belonging to the same Lhcb complex, which switches between a light-harvesting and a dissipative state, in this way changing the strength of the interaction. In principle all the antenna complexes can contain a quencher, as suggested by the analysis of Arabidopsis Lhcb-depleted lines, which have shown that none of the Lhcb is per se necessary for NPQ, although the absence of all of them leaves the system unprotected. This suggests that more than one antenna complex can act as a quencher and thus should contain a quenching site. Previous proposals have suggested a role for Chl 612 interacting with site L1 and Chl 603 interacting with site L2, but also other Chls located in the proximity of the carotenoids can be a putative quenching site. The spectroscopic properties of most of the Chls coordinated to several Lhcb complexes, their interactions with neighbouring carotenoids and their effect on the excited state lifetimes of the complexes have been investigated by combining mutation analysis with time-resolved spectroscopy. The experiments have been performed both in solution, where the light-harvesting conformation dominates, and in aggregates, which are widely used to mimic the quenching state in vivo. The experiments indentify several quenching sites in the aggregates.

Country
Netherlands
Related Organizations
Keywords

Biophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid