Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity
Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity
The spatiotemporal regulation of neurotransmitter transporters involves proteins that interact with their intracellular domains. Using a proteomic approach, we identified several proteins that interact with the C terminus of the serotonin transporter (SERT). These included neuronal nitric oxide synthase (nNOS), a PSD-95/Disc large/ZO-1 (PDZ) domain-containing protein recruited by the atypical PDZ binding motif of SERT. Coexpression of nNOS with SERT in HEK293 cells decreased SERT cell surface localization and 5-hydroxytryptamine (5-HT) uptake. These effects were absent in cells transfected with SERT mutated in its PDZ motif to prevent physical association with nNOS, and 5-HT uptake was unaffected by activation or inhibition of nNOS enzymatic activity. 5-HT uptake into brain synaptosomes was increased in both nNOS-deficient and wild-type mice i.v. injected with a membrane-permeant peptidyl mimetic of SERT C terminus, which disrupted interaction between SERT and nNOS, suggesting that nNOS reduces SERT activityin vivo. Furthermore, treating cultured mesencephalic neurons with the mimetic peptide similarly increased 5-HT uptake. Reciprocally, indicating that 5-HT uptake stimulates nNOS activity, NO production was enhanced on exposure of cells cotransfected with nNOS and SERT to 5-HT. This effect was abolished by 5-HT uptake inhibitors and absent in cells expressing SERT mutated in its PDZ motif. In conclusion, physical association between nNOS and SERT provides a molecular substrate for their reciprocal functional modulation. In addition to showing that nNOS controls cell surface localization of SERT, these findings provide evidence for regulation of cellular signaling (NO production) by a substrate-carrying transporter.
- University of Montpellier France
- Centre national de la recherche scientifique France
- Institut de Génomique Fonctionnelle France
- Inserm France
- University of Vienna Austria
Serotonin Plasma Membrane Transport Proteins, Mice, Serotonin, Animals, Brain, Humans, Calcium, Nitric Oxide Synthase Type I, Nitric Oxide, Cells, Cultured, Protein Structure, Tertiary, Signal Transduction
Serotonin Plasma Membrane Transport Proteins, Mice, Serotonin, Animals, Brain, Humans, Calcium, Nitric Oxide Synthase Type I, Nitric Oxide, Cells, Cultured, Protein Structure, Tertiary, Signal Transduction
20 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).168 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
