<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Antigen-Induced Increases in Pulmonary Mast Cell Progenitor Numbers Depend on IL-9 and CD1d-Restricted NKT Cells
Antigen-Induced Increases in Pulmonary Mast Cell Progenitor Numbers Depend on IL-9 and CD1d-Restricted NKT Cells
Abstract Pulmonary mast cell progenitor (MCp) numbers increase dramatically in sensitized and aerosolized Ag-challenged mice. This increase depends on CD4+ T cells, as no MCp increase occurs in the lungs of sensitized wild-type (WT) mice after mAb depletion of CD4+ but not CD8+ cells before aerosol Ag challenge. Neither the genetic absence of IL-4, IL-4Rα chain, STAT-6, IFN-γ, or IL-12p40 nor mAb blockade of IFN-γ, IL-3, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-12p40, or IL-12p40Rβ1 before Ag challenge in WT mice reduces the pulmonary MCp increase. However, sensitized and Ag-challenged IL-9-deficient mice and sensitized WT mice given mAb to IL-9 just before Ag challenge show significant reductions in elicited lung MCp/106 mononuclear cells of 47 and 66%, respectively. CD1d-deficient mice and WT mice receiving anti-CD1d before Ag challenge also show significant reductions of 65 and 59%, respectively, in elicited lung MCp/106 mononuclear cells, revealing an additional requirement for MCp recruitment. However, in Jα18-deficient mice, which lack only type 1 or invariant NKT cells, the increase in the numbers of lung MCp with Ag challenge was intact, indicating that their recruitment must be mediated by type 2 NKT cells. Furthermore, anti-CD1d treatment of IL-9-deficient mice or anti-IL-9 treatment of CD1d-deficient mice does not further reduce the significant partial impairment of MCp recruitment occurring with a single deficiency. These findings implicate type 2 NKT cells and IL-9 as central regulators that function in the same pathway mediating the Ag-induced increase in numbers of pulmonary MCp.
- Brigham and Women's Faulkner Hospital United States
- Harvard University United States
Aerosols, CD4-Positive T-Lymphocytes, Mice, Knockout, Mice, Inbred BALB C, Ovalbumin, Stem Cells, Interleukin-9, Mice, Nude, Cell Count, CD8-Positive T-Lymphocytes, Antibodies, Monocytes, DNA-Binding Proteins, Mice, Animals, Natural Killer T-Cells, Mast Cells, Antigens, CD1d, Lung, Spleen
Aerosols, CD4-Positive T-Lymphocytes, Mice, Knockout, Mice, Inbred BALB C, Ovalbumin, Stem Cells, Interleukin-9, Mice, Nude, Cell Count, CD8-Positive T-Lymphocytes, Antibodies, Monocytes, DNA-Binding Proteins, Mice, Animals, Natural Killer T-Cells, Mast Cells, Antigens, CD1d, Lung, Spleen
36 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).81 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
